当前位置:

OFweek储能网

化学储能

正文

【干货】石墨烯在电化学储能过程中的理论应用

导读: 小编将带领大家一起,了解目前石墨烯在电化学过程中的理论计算结果,以超级电容器、锂离子电池和ORR过程为典型代表,学习重要结论,加深对石墨烯功能的理解,也为新型石墨烯基电化学储能器件提供研究思路。

? ORR过程

燃料电池可以直接将化学能转变成电能,具有转化效率高,功率密度高和无污染的优点。O2还原反应是制约燃料电池发展的重要因素。该反应可以通过两种路径发生,第一是四电子过程,O2得到四个电子直接还原成H2O;第二是效率较低的两电子过程,O2转变为H2O2。由于利用效率高,四电子过程的催化剂研究非常重要。

石墨烯催化效果计算表明,O2分子与完整石墨烯片层的吸附能都非常小,二者的距离也较大,大于2. 6 ?。虽然O2分子与石墨烯形成弱的离子键,但是由于反应过程中后续步骤所需能量非常高,并且生成的OOH也难以吸附在完整石墨烯上,所以完整的石墨烯没有O2催化活性。由于N的电负性强于C,N周围的C原子带有正电荷,并且具有一定的自旋电荷。研究表明,当碳原子的自旋电荷密度或原子电荷密度高于0. 15时就会具有ORR的电化学活性。另外,科学家采用周期结构石墨烯模型详细探讨了完整石墨烯和掺N石墨烯上ORR过程,见图8,同时还计算了N石墨烯上N含量对ORR过程的影响,发现4% ~5%的N含量对于应用是比较合适的。

【干货】石墨烯在电化学储能过程中的理论应用

图8  ORR在(左)完整石墨烯和(右)N石墨烯上的反应过程

科学家使用团簇结构的石墨烯模型研究了含N石墨烯在酸性环境中对O2的催化机理。计算表明,OOH吸附在靠近吡啶结构N的C原子上,其中一个O与C原子相互作用,并且该C原子从石墨烯平面伸出。对于吡咯N,OOH同样会吸附在靠近N 的C原子上。当在OOH上进一步增加H后,吡啶N和吡咯N石墨烯上都会形成不稳定的HOOH,O—O键长增加,容易变成两个OH,所以在N石墨烯上的ORR是四电子过程。同时,作者提出自旋密度和电荷密度是决定催化效果的关键因素。尽管有的C电荷密度非常高,但是OOH更容易吸附在具有高自旋密度的C原子上。与电荷密度相比,自旋密度更能决定催化活性位,只有当自旋密度非常小时电荷密度才起作用。图9给出了所计算的掺N石墨烯上电荷密度和自旋密度分布。

【干货】石墨烯在电化学储能过程中的理论应用

【干货】石墨烯在电化学储能过程中的理论应用

图9  N掺杂石墨烯的(a)原子电荷密度和(b)自旋密度

Li-空气电池负极为Li,正极的空气电极通常为多孔炭,具有非常高的能量密度。外部的O2进入空气电极并吸附在多孔炭的表面,随后O2分解并与负极氧化得到的Li离子发生反应。科学家使用周期结构模型计算了Li-空气电池正极O2在N石墨烯表面的催化分解过程。O2分子靠近离石墨烯时,一个O原子位于N最邻近的C原子上面并向石墨烯平面倾斜,另外一个O位于C5N环的中心,O2不再平行,O—O键变弱。

除了在ORR反应中的催化作用,在O2析出反应中掺杂石墨烯也具有明显的电化学活性。理论计算表明,B掺杂的石墨烯由于缺电子,可以比完整石墨烯较强低吸附Li2O2,进而在较低能垒下活化Li—O键并将O2-氧化成O2。由于B掺杂的石墨烯可以在很大程度上降低决速步骤的能垒,可以有效提高锂空电池的电流密度。

<上一页  1  2  3  4  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号